Honors Physics - Unit 8 - Electricity

Unit Focus

Students will perform investigations into the behavior of series, parallel and combination electric circuits. Students will design circuits for specific behavior with a focus on an analysis of household circuitry. Electric power and the cost of electricity will be studied, in addition to AC and DC electricity.

Stage 1: Desired Results - Key Understandings

Standard(s)

Next Generation Science Standards (DCI)

Science: 11

- "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. PS3.9.A1
- Although energy cannot be destroyed, it can be converted to less useful forms-for example, to thermal energy in the surrounding environment. PS3.9.D1

Madison Public Schools Profile of a Graduate

 Critical Thinking- Analyzing: Examining information/data/evidence from multiple sources to identify possible underlying assumptions, patterns, and relationships in order to make inferences. (POG.1.2)

Creative Thinking

- Idea Generation: Studying a problem, need or model (mentor text, political piece, documents, art work, etc.) to consider limitations and imagine new solutions/transformations. (POG.2.1)

Transfer

T1 Analyze qualitative and quantitative data to interpret patterns, draw conclusions, and/or make predictions.
T2 Create models to explore complex systems, show mastery of key science concepts, and/or develop solutions through creation of a product open to testing and redesign.

Meaning	
Understanding(s)	Essential Question(s)
U1 Each form of energy can be converted into other forms of energy or into work (e.g. kinetic to potential, mechanical to electrical). U2 While energy within a system is continually changing forms, and being transferred, the total energy of the system is conserved.	Q1 Where does the energy of a system come from? How does it change? Where does it go?
Knowledge	

Stage 1: Desired Results - Key Understandings

K4 Students will understand basic circuits and the requirements needed in order to have current.
K5 Students will understand the relationship between voltage and current and the role resistance plays in a circuit.
K6 Students will understand the role of a fuse or circuit breaker in a circuit
K7 Capacitors are used to store charge

S5 Students will be able to determine the rate at which energy is used (i.e. Power) by electrical devices in simple circuits. Students will understand how power relates to voltage, current and resistance.
S6 Students will know that a kw-hr is a unit of energy
NOT power. From this, they should be able to determine the cost to operate the circuit.
S7 Solving for current and voltage for specific circuit elements in complex circuits
S8 Calculating initial and steady state current values in RC circuits

